Ubuntu OVF images for download

Lately I’m playing a lot with virtualization features and for this I needed a rapid way to deploy from scratch new instances. First I had the virtual machines converted to templates, but then I had to rebuild from zero the entire ESXi environment and those images were gone.

I realized then it was more easier to have OVF images saved on a distributed storage and deploy them as soon as I need them. I start looking around Internet and I could not find something that suit my needs.
Don’t get me wrong, there are plenty of OVF images around, but mostly have GUI and a lot of packages already installed that I do not need.

I wanted to have OVF files with low-end hardware and only CLI interface. Why should I download and deploy a 20 or 30 GB instance if the only things I need is CLI? From this I could customize it everytime exactly the way I wanted.

I started to create my OVF files and I’m pretty satisfied with them. Then I said why not to share them with the community?

I did chose Sourceforge to host my files because of their CDN and because it is free. On this blog I have to think how to organize them, because I don’t know if “post” format is the best idea. Until then, please find below the first two OVF images for Ubuntu 12.04 LTS.

All archives contain a text files with details about distro, user/passwd and services enabled. There may be other services enabled like postfix, but the listed ones are mandatory if you want network functionality and remote connection.

Here are the details for the below listed downloads:

Server images 32/64 bits

username: notroot
passwd: 123qweASD!

username: root
passwd: firstdigest
HDD: 8GB, ext4, 1 partition, thin provision
RAM: 256 CPU Core: 1

Services enabled:
SSHd
DHCP client

Downloads

Ubuntu 12.04 Server (i386) OVF

Ubuntu 12.04 Server (x86_64) OVF

If you encounter problems with these images please let me know here in Comments or on Sourceforge Project Discussions page.

In the upcoming days I will add here more images from different distros.

MAC address tracking with NMS

Let’s assume that I have a port open in my Cisco switch for guest users and I would like to keep track of the new mac-addresses that are added or existing mac-addresses that are removed from that port.

I have a NMS (Network Management System), capable of receiving SNMP, traps that will send me an e-mail alert whenever one of the above mentioned situations happens.

For this test I did use the following IP addresses:
– Cisco switch L3 interface from where the SNMP traps will be send: Lo10, 1.1.1.1 /32
– Cisco switch L2 port where I want to track the mac-address change: Fa0/10
– NMS IP address: 172.31.82.254
– SNMP community string: Cisco

OK, this is a simple example, but it can be useful in some situation or for Cisco exam preparation.

First let’s bring the Lo10 interface UP and configure the IP address. Please keep in mind that without a L3 interface the SNMP configuration will raise an alarm and the system will not work.

interface Loopback10
 ip address 2.2.2.2 255.255.255.255

Next, I’ll configure the SNMP part:

SW(config)#snmp-server host 172.31.82.254 traps Cisco
SW(config)#snmp-server enable traps mac-notification

Following is the actual configuration for mac-address change notification:

SW(config-if)#snmp trap mac-notification change ?
  added    Enable Mac Address added notification for this port
  removed  Enable Mac Address removed notification for this port

The above lines show the possible options. You can use them both if you want to receive notification for adding and removing of the mac-address or any of these options separately. I did use both for this test.

Let’s verify if the configuration is applied correctly:

SW#show mac address-table notification change interface fa0/10
MAC Notification Feature is Disabled on the switch
Interface            MAC Added Trap MAC Removed Trap
---------            -------------- ----------------
FastEthernet0/10     Enabled        Enabled

I find this helpful if you have open ports which require special attention and for some reason you cannot use some technique like dot1x or lock them on static mac-address.


Cisco 2600: How many IPv4 prefixes can fit in BGP table

Today I wanted to try and see how many IPv4 prefixes can a Cisco 2600 accommodate in BGP table both global and in VRF table. I have lying around a Cisco 2621XM with 64MB of RAM, so I said to stress it a bit like in the old days when it was productive.

I did use the bgp_simple tool to test with the latest full Internet prefixes table (dated 2013.03.09). For those of you not familiar with bgp_simple, it’s a script capable of BGP peering and route injection. I would recommend to check the script webpage as it’s an awesome tool.

First, I did use the Global table to store all BGP prefixes. The router issued a %SYS-2-MALLOCFAIL error after receiving 44791 prefixes and few seconds later it dropped the BGP neighborship peering.

BB1#sh ip bgp sum | b Nei
Neighbor        V    AS MsgRcvd MsgSent   TblVer  InQ OutQ Up/Down  State/PfxRcd
192.168.182.1   4 65000 1194845      95  1181910  360    0 00:10:57    44791
 
BB1#
*Feb 10 21:22:49.383: %SYS-2-MALLOCFAIL: Memory allocation of 65536 bytes failed from 0x8006A11C, alignment 0 
Pool: Processor  Free: 64176  Cause: Not enough free memory 
Alternate Pool: None  Free: 0  Cause: No Alternate pool 
 -Process= "BGP Router", ipl= 0, pid= 32 -Traceback= 0x8119EA40 0x80057D14 0x80059F18 0x8005A75C 0x8006A120 0x8006AE9C 0x8192D52C 0x80DFDD34 0x80DFE708 0x80DFF60C 0x82BA5A60 0x80DFF6E4 0x80DD8694 0x802435AC 0x80246CB0
*Feb 10 21:23:00.395: %BGP-5-ADJCHANGE: neighbor 192.168.182.1 Down No memory
*Feb 10 21:23:00.515: %BGP-3-NOTIFICATION: sent to neighbor 192.168.182.1 3/1 (update malformed) 0 bytes 
BB1# FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 0037 0200 0000 1C40 0101 0040 020E 0206 FDE8 9465 12EC 1D31 00D1 5821 4003 04C0 A8B6 0117 433F E0

For second test I did create VRF A and the BGP neighborship was established over an interface in that VRF, so all prefixes injected by bgp_simple arrived in the VRF table. This time it took only 33321 prefixes for the router to spit an error and drop the BGP connection.

BB1#sh ip bgp vpnv4 vrf A sum | b Nei
Neighbor        V    AS MsgRcvd MsgSent   TblVer  InQ OutQ Up/Down  State/PfxRcd
192.168.182.1   4 65000  439682      31   323732  534    0 00:09:24    33321
 
*Feb 10 21:37:22.323: %SYS-2-MALLOCFAIL: Memory allocation of 2920 bytes failed from 0x8006A11C, alignment 0 
Pool: Processor  Free: 8584  Cause: Memory fragmentation 
Alternate Pool: None  Free: 0  Cause: No Alternate pool 
 -Process= "BGP Router", ipl= 0, pid= 32 -Traceback= 0x8119EA40 0x80057D14 0x80059F18 0x8005A75C 0x8006A120 0x8006AE9C 0x80DEB7B0 0x80DCC800 0x80E3DCC8 0x80E3B62C 0x80E2A244 0x80E2AE30 0x80DD0B14 0x80DD7F08 0x802435AC
*Feb 10 21:37:31.011: %BGP-5-ADJCHANGE: neighbor 192.168.182.1 vpn vrf A Down No memory
*Feb 10 21:37:31.251: %BGP-3-NOTIFICATION: sent to neighbor 192.168.182.1 3/1 (update malformed) 0 bytes 
BB1#sh ip bgp vpnv4 vrf A sum | b Nei FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 0052 0200 0000 3740 0101 0040 020A 0204 FDE8 2236 1AAE 18B7 4003 04C0 A8B6 01C0 081C 18B7 03E9 18B7 A028 1AAE 3E80 1AAE 3F6A 1AAE 59D9 1AAE 89EA 2236 1AAE 1440 3B90

For those of you curious about why it took less prefixes to exhaust memory in VRF vs non-VRF, the reason is that in VRF you have more memory consumption per IPv4 prefix. Ivan Pepelnjak explained it very well in his blog post about running Internet in VRF.

I’ll check what other old Cisco routers I have around to see their BGP table limit.


CCIE Home Lab, what to do when your router has too little Flash space for IOS

I already explained in an older post my home lab for CCIE preparation. My BB1-BB3 routers are Cisco 2600 series and the rest of R1-R6 are emulated with Dynamips. The only problem is that one of the C2600 has too little Flash space to hold the required IOS. Memory is sufficient, but Flash not.

The only workaround I have is to load the IOS image from a TFTP server. I will explain here my procedure, maybe it’s useful for somebody else out there.

First, I recently upgrade to Ubuntu 12.04 and for some reason the TFTPD (default tftp server) was not working properly. I found TFTPD-HPA to be a good alernative, so I did install it:

sudo apt-get install tftpd-hpa

After installation you may want to check /etc/default/tftpd-hpa. On my system it looks like this:

# /etc/default/tftpd-hpa
 
TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/var/lib/tftpboot"
TFTP_ADDRESS="0.0.0.0:69"
TFTP_OPTIONS="--secure"

Next step is to get a IOS image and copy it under /var/lib/tftpboot. If you need a hint, I’m using c2600-adventerprisek9-mz.124-25d.bin which needs only a small amount of memory to be installed on the Cisco 2600 platform and it’s enough for testing.

Now we need to get the IOS image on the C2600 using TFTP. Depending on your topology used for CCIE exam practice, this can be done in different ways.

Currently I’m using the workbooks from Micronicstraining (Narbik’s workbooks, if this sounds more familiar). Previously I used the ones from Internetwork Expert. The idea is that topology is pretty similar and it looks something like this:

MicronicsTraining
Narbik’s workbook topology

My problematic router is the BB3. Somehow I need that BB3 is communicating with my Ubuntu server, as simple as possible, without changing ethernet cables all the time.
You noticed int the above diagram that BB3 has an interface on the SW1 (Fa0/13) and SW1 has F0/1 connected to my Ubuntu server as explained in this post. What I need is to have Fa0/13 and Fa0/1 on the SW1 on the same VLAN for proper communication. Usually I just default the interface and then everything is fine.

On the Ubuntu box, I can have an IP address on the physical card (this will not influence in any way the Dynamips emulated router attached to this interface):

eth1      Link encap:Ethernet  HWaddr 00:e0:b6:06:a6:3b
          inet addr:192.168.182.1  Bcast:192.168.182.255  Mask:255.255.255.0
          inet6 addr: fe80::2e0:b6ff:fe06:a63b/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:64 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B)  TX bytes:14100 (14.1 KB)

By default on the BB3 router I have an IOS image that can fit the Flash size (c2600-i-mz.123-26.bin) and in case that for some reasons the TFTP Server is not reachable, it will boot that image.

The BB3 startup-configuration looks like this:

interface FastEthernet0/0
 ip address 192.168.182.13 255.255.255.0
!
boot system tftp c2600-adventerprisek9-mz.124-25d.bin 192.168.182.1

What you have to remember:
1. Start your TFTP server and assure that it has the correct IP address on the interface where you will server IOS files
2. Start your switch (if you have one in between Cisco router and the TFTP server) and be sure that the interfaces are able to exchange packet (same VLAN, etc)
3. Start your Router

In case you did miss any of the above steps, you’ll see something like this:

%SYS-4-CONFIG_NEWER: Configuration from version 12.4 may not be correctly understood
 Slot is empty or does not support clock participate
 WIC slot is empty or does not support clock participate
%SYS-6-READ_BOOTFILE_FAIL: tftp://192.168.182.1/c2600-adventerprisek9-mz.124-25d.bin File read failed -- Timed out.
 
 Hello from IFS_TYPE_ROM successful type-check
 
%SYS-6-BOOT_MESSAGES: Messages above this line are from the boot loader.
boot of "tftp:c2600-adventerprisek9-mz.124-25d.bin 192.168.182.1" using boot helper "flash:c2600-i-mz.123-26.bin" failed
error returned: File read failed -- Timed out
loadprog: error - on file open
boot: cannot load "tftp:c2600-adventerprisek9-mz.124-25d.bin 192.168.182.1"

and the router will boot your image stored locally on Flash.

Instead of doing all this work, which may generate some headache, I could just buy another router with enough Flash (and Memory). Currently I don’t want to make this investment, so I’ll stick with the above scenario.


Overlay MPLS over provider backbone

Imagine that you have two or more sites which you want to connect together using MPLS technology. You cannot afford dark fiber and your Service Provider cannot offer you L2 connections of any kind. The only thing your SP can offer is L3 transport. Still, you want to build your own MPLS environment and there is no way to convince your SP to enable CsC.

I will use the following topology to demonstrate one of the possibilities to build an overlay MPLS over SP backbone.

Overlay MPLS over SP

The provider has already his MPLS backbone configured (P1, PE1, PE2 and PE3) and it’s offering you, as customer, IP transport over it’s backbone. Usually, from customer perspective, you don’t get to see the SP backbone, but just for reference, it is using ISIS for IGP, MP-BGP and MPLS VPN to transport our prefixes.

From IP prefixes allocation I’m using “xy” in the third octet (x – lower router number, y – higher router number) and “z” in the last octet (router number) with a /24 mask.

We have three locations named CPE1, CPE2 and CPE3. Currently between my CPE and provider PE I have enabled BGP, but you can use any protocol (even static) if your SP is able to route your IP prefixes over its backbone. On each CPE device I have a Loopback interface and its IP address will be the only prefix you announce (through BGP in this demonstration) to SP.

Let’s establish the BGP connection from our CPE to SP PE. As I’m playing the role of customer here, only the CPE exhibits will be shown:

CPE5

interface Loopback0
 ip address 5.5.5.5 255.255.255.255
!
router bgp 65001
 bgp router-id 5.5.5.5
 bgp log-neighbor-changes
 neighbor 10.0.35.3 remote-as 65000
 neighbor 10.0.35.3 description R3PE3
 neighbor 10.0.35.3 timers 5 20
 !
 address-family ipv4
  neighbor 10.0.35.3 activate
  no auto-summary
  no synchronization
  network 5.5.5.5 mask 255.255.255.255
 exit-address-family

CPE6

interface Loopback0
 ip address 6.6.6.6 255.255.255.255
!
router bgp 65001
 bgp router-id 6.6.6.6
 bgp log-neighbor-changes
 neighbor 10.0.26.2 remote-as 65000
 neighbor 10.0.26.2 description R2PE2
 neighbor 10.0.26.2 timers 5 20
 !
 address-family ipv4
  neighbor 10.0.26.2 activate
  no auto-summary
  no synchronization
  network 6.6.6.6 mask 255.255.255.255
 exit-address-family

CPE7

interface Loopback0
 ip address 7.7.7.7 255.255.255.255
!
router bgp 65001
 bgp router-id 7.7.7.7
 bgp log-neighbor-changes
 neighbor 10.0.47.4 remote-as 65000
 neighbor 10.0.47.4 description R4PE4
 neighbor 10.0.47.4 timers 5 20
 !
 address-family ipv4
  neighbor 10.0.47.4 activate
  no auto-summary
  no synchronization
  network 7.7.7.7 mask 255.255.255.255
 exit-address-family

BGP neighborship suppose to be up now and on each CPE I should receive the Loopback prefixes of the other two CPE devices.

R5CPE5#sh ip bgp sum | b Nei
Neighbor        V    AS MsgRcvd MsgSent   TblVer  InQ OutQ Up/Down  State/PfxRcd
10.0.35.3       4 65000     126     125        2    0    0 00:10:04        0
!
R6CPE6#sh ip bgp sum | b Nei
Neighbor        V    AS MsgRcvd MsgSent   TblVer  InQ OutQ Up/Down  State/PfxRcd
10.0.26.2       4 65000     136     135        2    0    0 00:10:50        0
!
R7CPE7#sh ip bgp sum | b Nei
Neighbor        V    AS MsgRcvd MsgSent   TblVer  InQ OutQ Up/Down  State/PfxRcd
10.0.47.4       4 65000     134     134        4    0    0 00:10:46        0

BGP neighborship is up alright, but where are my prefixes? State/PfxRcd is 0, when it should show 2.
I did that on purpose.

Notice that we are using the same AS number on all our sites. I think you already know that the rule in BGP is that if our own ASN is seen in the AS-Path of a particular IP prefix, BGP will not install that prefix in BGP table. This is fixable:
1. We ask our provider to have a little “as-override” command in its BGP configuration for our neighbor
2. We use different ASN on each site (assuming that we are using private ASN)
3. We configure “allowas-in” on BGP neighborship with SP

Basically you may use any of the three methods (or other if you can think of any other), but in my case I don’t want to ask the SP nor I want to change my ASN scheme. I’ll go with the third option and be careful not run into loop issues (consider this is an Enterprise environment I think it’s doable).

CPE5

router bgp 65001
  neighbor 10.0.35.3 allowas-in

CPE6

router bgp 65001
  neighbor 10.0.26.2 allowas-in

CPE7

router bgp 65001
  neighbor 10.0.47.4 allowas-in

Let’s check again and do some testing. I will use CPE5

R5CPE5#sh ip route bgp
     6.0.0.0/32 is subnetted, 1 subnets
B       6.6.6.6 [20/0] via 10.0.35.3, 00:04:02
     7.0.0.0/32 is subnetted, 1 subnets
B       7.7.7.7 [20/0] via 10.0.35.3, 00:04:02
!
R5CPE5#ping 6.6.6.6 source 5.5.5.5
 
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 6.6.6.6, timeout is 2 seconds:
Packet sent with a source address of 5.5.5.5 
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 32/44/64 ms
 
R5CPE5#ping 7.7.7.7 source 5.5.5.5
 
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 7.7.7.7, timeout is 2 seconds:
Packet sent with a source address of 5.5.5.5 
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/52/96 ms

Next part involves the creation of Tunnels interfaces, to have a full mesh connection between the three sites, enable of IGP / MPLS and creation of a second Loopback interface which we will use later for the iBGP configuration. I did chose IS-IS for IGP and LDP for MPLS. The new Loopback interface will be routed using the IS-IS protocol.

A note from my side. Since I had limited number of routers, my CPE devices will be kind of P / PE / CE router in my overlay MPLS demonstration.

CPE5

int Tun56
tunnel source lo0
tunnel destination 6.6.6.6
ip address 192.168.56.5 255.255.255.0
mpls ip
ip router isis
!
int Tun57
tunnel source lo0
tunnel destination 7.7.7.7
ip address 192.168.57.5 255.255.255.0
mpls ip
ip router isis
!
int Lo1
ip address 55.55.55.55 255.255.255.255
!
router isis
net 47.0005.0005.0005.0005.00
passive-interface lo1
is-type level-2-only

CPE6

int Tun56
tunnel source lo0
tunnel destination 5.5.5.5
ip address 192.168.56.6 255.255.255.0
mpls ip
ip router isis
!
int Tun67
tunnel source lo0
tunnel destination 7.7.7.7
ip address 192.168.67.6 255.255.255.0
mpls ip
ip router isis
!
int Lo1
ip address 66.66.66.66 255.255.255.255
!
router isis
net 47.0006.0006.0006.0006.00
passive-interface lo1
is-type level-2-only

CPE7

int Tun57
tunnel source lo0
tunnel destination 5.5.5.5
ip address 192.168.57.7 255.255.255.0
mpls ip
ip router isis
!
int Tun67
tunnel source lo0
tunnel destination 6.6.6.6
ip address 192.168.67.7 255.255.255.0
mpls ip
ip router isis
!
int Lo1
ip address 77.77.77.77 255.255.255.255
!
router isis
net 47.0007.0007.0007.0007.00
is-type level-2-only
passive-interface lo1

I will use CPE5 for some show commands output and to check that everything is running fine:

R5CPE5#ping 192.168.56.6
 
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.56.6, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 44/48/52 ms
 
R5CPE5#ping 192.168.57.7
 
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.57.7, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 32/40/52 ms
 
!
R5CPE5#sh isis topology
 
IS-IS paths to level-2 routers
System Id            Metric     Next-Hop             Interface   SNPA
R5CPE5               --
R6CPE6               10         R6CPE6               Tu56        *Tunnel*       
R7CPE7               10         R7CPE7               Tu57        *Tunnel* 
!
R5CPE5#show mpls interfaces 
Interface              IP            Tunnel   Operational
Tunnel56               Yes (ldp)     No       Yes         
Tunnel57               Yes (ldp)     No       Yes 
!
R5CPE5#show mpls ldp neighbor 
    Peer LDP Ident: 6.6.6.6:0; Local LDP Ident 5.5.5.5:0
	TCP connection: 6.6.6.6.64820 - 5.5.5.5.646
	State: Oper; Msgs sent/rcvd: 16/16; Downstream
	Up time: 00:07:47
	LDP discovery sources:
	  Tunnel56, Src IP addr: 192.168.56.6
        Addresses bound to peer LDP Ident:
          10.0.26.6       6.6.6.6         192.168.56.6    192.168.67.6    
    Peer LDP Ident: 7.7.7.7:0; Local LDP Ident 5.5.5.5:0
	TCP connection: 7.7.7.7.11545 - 5.5.5.5.646
	State: Oper; Msgs sent/rcvd: 16/16; Downstream
	Up time: 00:07:26
	LDP discovery sources:
	  Tunnel57, Src IP addr: 192.168.57.7
        Addresses bound to peer LDP Ident:
          10.0.47.7       7.7.7.7         192.168.57.7    192.168.67.7

I will create now two VRF instances as I want to separate Financial department traffic from the Technical one.

On all three CPE devices:

ip vrf FIN
rd 65001:1
route-target import 65001:1
route-target export 65001:1
!
ip vrf TEK
rd 65001:2
route-target import 65001:2
route-target export 65001:2

Configuration of iBGP depends on the previous Loopback1 interfaces, so be sure that you have that interfaces reachable through IS-IS. Because it’s an iBGP and I don’t want to type the same command over and over, I will use peer-groups.

CPE5

router bgp 65001
!
neighbor OM peer-group
neighbor OM remote-as 65001
neighbor OM timers 5 20
neighbor OM description Overlay-MPLS
neighbor OM update-source lo0
!
address-family vpnv4
neighbor 66.66.66.66 peer-group OM
neighbor 77.77.77.77 peer-group OM

CPE6

router bgp 65001
neighbor OM peer-group
neighbor OM remote-as 65001
neighbor OM timers 5 20
neighbor OM description Overlay-MPLS
neighbor OM update-source lo1
!
address-family vpnv4
neighbor 55.55.55.55 peer-group OM
neighbor 77.77.77.77 peer-group OM

CPE7

router bgp 65001
neighbor OM peer-group
neighbor OM remote-as 65001
neighbor OM timers 5 20
neighbor OM description Overlay-MPLS
neighbor OM update-source lo1
!
address-family vpnv4
neighbor 55.55.55.55 peer-group OM
neighbor 66.66.66.66 peer-group OM

We should check that everything is up. I will use again CPE5:

R5CPE5#show ip bgp vpnv4 all sum | b Nei
Neighbor        V    AS MsgRcvd MsgSent   TblVer  InQ OutQ Up/Down  State/PfxRcd
66.66.66.66     4 65001      46      46        1    0    0 00:03:30        0
77.77.77.77     4 65001      31      31        1    0    0 00:02:18        0

Finally we are getting somewhere. In real world you will have the CPE routers connected to downstream devices, using subinterfaces in particular VRF and so on. I’m short on devices, so I will use some additional Loopback interfaces and add them to VRF FIN and TEK for testing.

CPE5

int Lo51
ip vrf forwarding FIN
ip address 10.51.51.51 255.255.255.255
!
int Lo52
ip vrf forwarding TEK
ip address 10.52.52.52 255.255.255.255
!
router bgp 65001
!
address-family ipv4 vrf FIN
network 10.51.51.51 mask 255.255.255.255
!
address-family ipv4 vrf TEK
network 10.52.52.52 mask 255.255.255.255

CPE6

int Lo61
ip vrf forwarding FIN
ip address 10.61.61.61 255.255.255.255
!
int Lo62
ip vrf forwarding TEK
ip address 10.62.62.62 255.255.255.255
!
router bgp 65001
!
address-family ipv4 vrf FIN
network 10.61.61.61 mask 255.255.255.255
!
address-family ipv4 vrf TEK
network 10.62.62.62 mask 255.255.255.255

CPE7

int Lo71
ip vrf forwarding FIN
ip address 10.71.71.71 255.255.255.255
!
int Lo72
ip vrf forwarding TEK
ip address 10.72.72.72 255.255.255.255
!
router bgp 65001
!
address-family ipv4 vrf FIN
network 10.71.71.71 mask 255.255.255.255
!
address-family ipv4 vrf TEK
network 10.72.72.72 mask 255.255.255.255

To check if everything is working fine, I will use CPE5 for some tests:

R5CPE5#sh ip route vrf FIN | b Ga
Gateway of last resort is not set
 
     10.0.0.0/32 is subnetted, 3 subnets
B       10.61.61.61 [200/0] via 66.66.66.66, 00:04:42
C       10.51.51.51 is directly connected, Loopback51
B       10.71.71.71 [200/0] via 77.77.77.77, 00:02:46
!
R5CPE5#sh ip route vrf TEK | b Ga
Gateway of last resort is not set
 
     10.0.0.0/32 is subnetted, 3 subnets
B       10.62.62.62 [200/0] via 66.66.66.66, 00:04:59
C       10.52.52.52 is directly connected, Loopback52
B       10.72.72.72 [200/0] via 77.77.77.77, 00:03:04
!
R5CPE5#ping vrf FIN 10.71.71.71 source 10.51.51.51
 
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.71.71.71, timeout is 2 seconds:
Packet sent with a source address of 10.51.51.51 
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 40/44/48 ms
!
R5CPE5#ping vrf TEK 10.62.62.62 source 10.52.52.52
 
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.62.62.62, timeout is 2 seconds:
Packet sent with a source address of 10.52.52.52 
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 40/47/52 ms
!
R5CPE5#show mpls forwarding-table 
Local  Outgoing    Prefix            Bytes tag  Outgoing   Next Hop    
tag    tag or VC   or Tunnel Id      switched   interface              
16     Pop tag     192.168.67.0/24   0          Tu57       point2point  
       Pop tag     192.168.67.0/24   0          Tu56       point2point  
17     Pop tag     66.66.66.66/32    0          Tu56       point2point  
18     Pop tag     77.77.77.77/32    0          Tu57       point2point  
19     Aggregate   10.51.51.51/32[V] 1040                               
20     Aggregate   10.52.52.52/32[V] 520

You may wonder why somebody would put together such a complex configuration. There may be multiple reasons, beyond the scope of this example, but I would like to add MPLS TE, Encrypted Site-to-Site traffic with route manipulation, independent configuration from the SP, learning purposes and many more.

Can we encounter problems with this configuration? Well, yes.
If the provider has a very low MTU size support, you may get a lot of fragmentation. Also maintenance and operation of Tunnels may be tricky for a very large environment, but there are solutions to limit the number of tunnels. Still the benefits exit.

To enumerate one benefit from real world. Applying this configuration in Enterprise environment, you have the possibility to change your SP without too much of a dazzle as long as your new provider can transport the IP address of your primary Loopback interface. The rest, stays the same.

Please let me know if you have questions or if something in my explanation is wrong.